Ассоциация EAM
Ассоциация эффективного управления производственными активами

Лекция 12. Измерение параметров вибрации

Датчики для измерения вибрации

Измерение механических колебаний может быть относительным (например, биения вала относительно корпуса подшипника) или абсолютной, что предполагает наличие неподвижной точки отсчёта – искусственного «нуля», относительно которого и выполняются измерения. Основным решением, в настоящее время, является преобразование механических колебаний в электрический сигнал при помощи вибрационных датчиков.

Вибрационный датчик – устройство, генерирующее электрический сигнал, пропорциональный измеряемому параметру вибрационного процесса. При измерении параметров вибрации используются датчики: проксиметры – для измерения виброперемещения; велосиметры – для измерения виброскорости; акселерометры генерирующие сигнал, пропорциональный виброускорению.

Проксиметр (датчик перемещения) – стационарно установленное устройство, имеющее усилитель сигналов и генерирующее напряжение на выходе, пропорциональное расстоянию до вращающегося ротора (рисунок 78). Датчик (вихретоковый) бесконтактно измеряет относительное перемещение вала в пределах зазора подшипника. При колебаниях зазора между ротором и датчиком, закрепленном на опоре, изменяются частота или амплитуда электромагнитных параметров, пропорциональных частоте и значению амплитуды зазора. Для измерения радиальной вибрации, датчики устанавливают парами под углом 90° перпендикулярно валу. Это делает возможным визуализацию на экране осциллографа орбиты движения вала, полярную диаграмму траектории центра вала в радиальной плоскости.

Рисунок 78 – Проксиметры Рисунок 78 – Проксиметры

Вихретоковый преобразователь относительного перемещения: 1 – рабочая катушка; 2 – катушка температурной компенсации; 3 – корпус; 4 – изоляционная втулка

Рисунок 78 – Проксиметры

Велосиметры (измерители виброскорости) состоят из катушки индуктивности и магнита (рисунок 79). Относительное движение магнитного поля в катушке порождает ЭДС индукции, сила которой пропорциональна скорости движения. Имеют больший выходной сигнал, применение ограничивается частотой 2000 Гц.

Рисунок 79 – Велосиметры Рисунок 79 – Велосиметры

Электродинамический преобразователь относительного перемещения: 1 – магнит; 2 – магнитопровод; 3 – разрезные пружины; 4 – катушка в качестве инерционного элемента

Рисунок 79 – Велосиметры

Конструктивно датчик выполнен в виде цилиндрического корпуса, в котором расположена катушка индуктивности в упругом подвесе, внутри которой расположен магнит. При колебаниях корпуса датчика катушка индуктивности начинает колебаться под действием силы инерции, пересекая магнитное поле, при этом в катушке возникает ЭДС, амплитуда и частота которой пропорциональны скорости и частоте колебаний корпуса датчика, прикрепленного к исследуемой поверхности.

Пьезоэлектрические акселерометры – наиболее универсальные и часто используемые датчики (рисунок 80). Основные варианты конструкции:

  • сжатие масса воздействует силой сжатия на пьезоэлектрический элемент;
  • сдвиг работа пьезоэлемента под действием срезывающего усилия.

Рисунок 80 – Акселерометры

Датчик с элементом сжатия

Рисунок 80 – Акселерометры

Датчик со сдвиговым элементом

Рисунок 80 – Акселерометры Рисунок 80 – Акселерометры

Рисунок 80 – Акселерометры

Акселерометр является преобразователем механических колебаний в электрический сигнал пропорциональный виброускорению. Чувствительный элемент акселерометра состоит из одного или нескольких дисков или пластинок из пьезоэлектрических материалов. Действие пьезоэлектрического измерительного преобразователя основано на использовании прямого пьезоэффекта, то есть свойств некоторых материалов (пьезоэлектриков) генерировать заряд, под действием приложенной к ним механической силы. Над чувствительным элементом установлена инерционная масса, прижатая гайкой (жесткой пружиной). Под воздействием механических колебаний инерционная масса m воздействует на пьезоэлемент с силой F, пропорциональной ускорению a: F = m × a. В результате пьезоэлектрического эффекта на поверхности пьезоэлемента возникает электрический сигнал U пропорциональный воздействующей силе F и ускорению а механических колебаний. Частотный диапазон от 0 до 1/3 резонансной частоты акселерометра (обычно 30 кГц). Акселерометры имеют линейную амплитудную чувствительность в рабочем диапазоне (рисунок 81), стабильно работают длительное время, нуждаются в периодической калибровке.

Рисунок 81 – Амплитудно-частотная характеристика пьезоакселерометра Рисунок 81 – Амплитудно-частотная характеристика пьезоакселерометра

Рисунок 81 – Амплитудно-частотная характеристика пьезоакселерометра

Датчики вибрации работают в ограниченном температурном диапазоне. Для акселерометра рабочий диапазон температур составляет от -30 °С до +80 °С. Для установки на горячие поверхности используются высокотемпературные пьезоакселерометры, работающие в диапазоне до +260 °С.

Пьезоэлектрические вибропреобразователи имеют диапазон рабочих частот до первого резонанса; электродинамический датчик имеет диапазон рабочих частот между первым и вторым резонансом; датчик перемещения – в области частот выше собственной частоты датчика.

Применение пьезоэлектрических датчиков по температуре окружающей среды ограничено, точкой Кюри температурой фазового перехода. При нагреве датчика возможен пироэффект появление заряда на выходе датчика и уменьшение чувствительности. Применяемые в пьезоэлектрических датчиках ферроэлектрические керамики (группа титанатов и цирконатов свинца) имеют высокие значения точек Кюри и работают в температурных диапазонах до +250 °С.

Акселерометры различаются на «зарядовые», датчики напряжения и со встроенной электроникой. Первые два типа относятся к высокоомным преобразователям, третий к низкоомным. Акселерометры измеряют абсолютное ускорение, а сигналы виброперемещения и виброскорости получаются путем преобразования в электронной части виброметра.

Пьезоэлектрический элемент акселерометра используется как источник заряда или как источник напряжения. Поэтому, чувствительность акселерометра определяется по заряду на единицу ускорения или напряжению на единицу ускорения.

Чувствительность по заряду выражается в единицах заряда (пКл) на единицу ускорения механических колебаний – пКл/(м/с2).

Чувствительность по напряжению выражается в единицах выдаваемого электрического напряжения на единицу ускорения механических колебаний – мВ/(м/с2).

Чувствительность по заряду не зависит от длины соединительного кабеля, а по напряжению зависит. Учитывая это, калибровка акселерометров по напряжению проводится с определенным соединительным кабелем.

При использовании пьезоэлектрических датчиков с усилителем заряда отношение сигнал/шум падает с увеличением длины кабеля. Поэтому, при применении усилителя заряда надо применять малошумные кабели и минимизировать изгибы.

Рабочий диапазон акселерометра по верхней частоте, в котором его характеристика равномерна и линейна, определяется, исходя из его амплитудно-частотной характеристики (рисунок 81), которая определяется резонансной характеристикой датчика в закрепленном состоянии. Фазовая характеристика акселерометра не вносит искажений в пределах частоты АЧХ.

Нижний предел рабочего частотного диапазона определяется характеристикой предусилителя, используемого в виброметре.

По характеристикам неравномерности датчики выпускаются:

  • с погрешностью измерения в рабочем диапазоне ±5% и предельной рабочей частотой равной 1/4…1/5 частоты резонанса;
  • с погрешностью измерения в рабочем диапазоне ±10% и предельной рабочей частотой равной 1/3 частоты резонанса.

Разъемы для подключения соединительных кабелей акселерометров распо-ложены сверху, или сбоку корпуса. Чувствительность находится в диапазоне 1…16 мВ/(м/с2) или пКл/(м/с2). Специальные акселерометры имеют нормализованную чувствительность, например 1 или 10 пКл/(м/с2), что упрощает калибровку и проверку виброизмерительных систем.

Параметры акселерометров, при эксплуатации и хранении которых соблюдаются определяемые технической спецификацией пределы температуры, излучения, механических ударов и так далее, стабильны в течение длительного времени. На основе опыта установлено, что параметры акселерометров не изменяются более чем на 2% даже в течение нескольких лет. Однако, не бережное обращение с акселерометрами даже при их нормальной эксплуатации может привести к значительным изменениям их параметров и к их повреждению. Результатом свободного падения акселерометра из руки на пол из бетона является механический удар.

Акселерометры рекомендуется проверять и повторно калибровать по регулярным интервалам времени. Калибровка чувствительности акселерометра дает гарантию его работоспособности.

Способы крепления вибрационных датчиков

Возможны следующие способы крепления вибрационных датчиков (рисунок 82):

  • при помощи шпильки;
  • клеевые соединения, включая крепление при помощи пчелиного воска;
  • использование промежуточных элементов;
  • при помощи магнитов;
  • при помощи щупа.
Рисунок 82 – Способы крепления вибрационных датчиков

Рисунок 82 – Способы крепления вибрационных датчиков

Крепление при помощи шпильки на гладкой плоской поверхности является предпочтительным. Место проведения измерения предварительно подготавливается (рисунок 83). Сверлится отверстие, нарезается резьба, шлифуется поверхность. При этом соблюдаются следующие требования:

  • глубина резьбового отверстия должна быть достаточной, чтобы шпилька не упиралась в дно отверстия в основании датчика;
  • шероховатость поверхности не более 1,6…0,25 Rz;
  • неперпендикулярность оси резьбового соединения к плоскости крепления преобразователя не более 0,02%;
  • неплоскостность поверхности крепления 0,01%;
  • крутящий момент при креплении датчика на шпильку М4…М8 1,7…2 Нм.
Рисунок 83 – Требования к месту установки датчика при помощи шпильки

Рисунок 83 – Требования к месту установки датчика при помощи шпильки

Поверхность объекта должна быть ровной и чистой. На рабочую поверхность датчика наносится слой пластичной смазки, что увеличивает жёсткость механического соединения датчика и объекта измерений и создает хороший контакт поверхностей.

На рисунке 84 показана амплитудно-частотная характеристика пьезодатчика, закрепленного стальной шпилькой на гладкой поверхности объекта. В этом случае резонансная частота пьезодатчика практически совпадает с резонансной частотой, полученной при калибровке производителем (примерно 33 кГц).

Рисунок 84 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью стальной шпильки Рисунок 84 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью стальной шпильки

Рисунок 84 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью стальной шпильки

Недостатки: большие затраты времени на установку датчика и необходимость проведения слесарных работ.

Альтернативным методом крепления пьезодатчиков является крепление на тонком слое пчелиного воска, при помощи клея, цемента и другие. Резонансная частота уменьшается незначительно (рисунок 85). Этот способ крепления применим при комнатной температуре поверхности объекта и малой амплитуде колебаний.

Рисунок 85 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью пчелиного воска Рисунок 85 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью пчелиного воска

Рисунок 85 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью пчелиного воска

Недостатками этого метода крепления являются размягчение воска или клея с ростом температуры (допустимая температура +35…40 °С) и ненадежность крепления массивных датчиков, особенно в направлении измерения, отличном от вертикального. Крепление датчика пчелиным воском на гладкой чистой поверхности при измерении вибрации в вертикальном направлении можно считать допустимым для датчиков массой не более 20 г при амплитудах виброускорения до 100 м/с2.

Использование промежуточных элементов – пластин, дисков приводит к искажению воспринимаемого сигнала на высоких из-за механической фильтрации и снижению резонансной частоты из-за повышенной податливости системы.

В тех случаях, когда необходимо обеспечить прочное крепление акселерометра без нарушения поверхности объекта резьбовыми отверстиями, используются специальные шпильки, закреплённые на плоском диске (промежуточные элементы) прикрепляемые твёрдым клеем или цементом. В качестве склеивающих материалов рекомендуются эпоксидные смолы и цианакриловые клеи. Изолированная шпилька и слюдяная шайба используются там, где необходима электрическая изоляция акселерометра относительно объекта.

Наиболее широкое распространение получил способ крепления датчиков на гладкой поверхности объекта с помощью постоянного магнита. При этом статическая сила сцепления магнита с измерительной поверхностью во многом влияет на диапазон измерений. Это определяет необходимость использования неодимовых магнитов с усилием 30…50 Н. Требования к обработке поверхности те же, что и для соединения при помощи шпильки. Крепление при помощи магнита (рисунок 86) сокращает измеряемый частотный диапазон до 5000 Гц. Резонансная частота в этом случае уменьшается примерно до 7… 15 кГц и зависит от типа магнита.

Рисунок 86 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью магнита Рисунок 86 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью магнита

Рисунок 86 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью магнита

Измерение вибрации с помощью щупа, снижает верхний частотный диапазон (рисунок 87) до 1000 Гц. Угол между измерительной осью вибродатчика и направлением измерения на должен превышать 25°.

Рисунок 87 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью щупа Рисунок 87 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью щупа

Рисунок 87 – Амплитудно-частотная характеристика вибрационного датчика при креплении с помощью щупа

При проведении измерений измерительный кабель не должен подвергаться интенсивным колебаниям и должен быть удален (по мере возможности) от источ-ников сильных электромагнитных полей.

Устройство средств измерения вибрации

Основными элементам приборов для измерения вибрации являются: датчики вибрации, фильтры, преобразователи сигнала. Датчик вибрации преобразует механические колебания в электрический сигнал. Фильтры выделяют компоненты сигнала в необходимой области частот. Преобразователи сигнала: детектор для оценки амплитуды выделенных компонент; сумматор – для оценки среднеквадратичного значения сигнала; интегратор – для преобразования сигнала виброускорения в виброскорость или виброскорости в виброперемещение.

Виброметры

Приведенная на рисунке 88 блок-схема иллюстрирует конструкцию и принцип действия современного виброметра. Акселерометр соединяется с усилителем заряда, образующим входной каскад прибора. Усилитель заряда во входном каскаде исключает необходимость применения внешнего предусилителя и даёт возможность соединения акселерометра и виброметра длинным кабелем без заметной потери чувствительности системы.

Рисунок 88 – Блок-схема виброметра

Рисунок 88 – Блок-схема виброметра

Каскад электронных интеграторов обеспечивает измерение виброскорости и виброперещения. Фильтры верхних и нижних частот настраивают согласно требованиям к ширине анализируемой полосы частот, рабочему частотному диапазону используемого акселерометра. Фильтры позволяют эффективно подавляют помехи, обусловленные низко- и высокочастотными шумами. Усилительный каскад обеспечивает необходимое усиление сигнала.

Виброметр позволяет измерять среднеквадратичное, пиковое значение или размах колебаний измеряемого сигнала. В конструкции может быть предусмотрено запоминающее устройство. Запоминающее устройство эффективно при измерении механических ударов и переходных процессов. После преобразования в каскаде линейно-логарифмического преобразователя измеряемый сигнал поступает на измерительный прибор.

Вместе с виброметром можно использовать внешние фильтры, обеспечи-вающие частотный анализ исследуемых механических колебаний. Виброметр снабжается выходами переменного и постоянного напряжений. Это позволяет подключать осциллографы, измерительные магнитофоны и регистрирующие приборы.
Динамический диапазон определяет возможность виброизмерительной аппаратуры при измерении амплитуды вибрационного сигнала сохранять линейную связь между входом и выходом. Выражается в дБ или параметрах вибрации.

Динамический диапазон сверху ограничен максимальным значением входного заряда, снизу уровнем собственных шумов усилителя заряда. Динамический диапазон зависит от коэффициента преобразования акселерометра.

Величина отношения сигнал/шум (Кш) регламентируется ГОСТ 30296-95:

  • для диапазона частот 10 Гц Кш = 2,51;
  • для диапазона частот от 10 Гц и выше Кш = 3,162.

Динамический диапазон вибродиагностической аппаратуры лежит в пределах 60…100 дБ, иногда выше.

Анализатор вибрации

Наиболее часто используются средства измерения, реализуемые на базе вычислительной техники: анализаторы формы, спектральные анализаторы и анализаторы спектра огибающей, структура которых приведена на рисунках 89, 90, 91. Функции анализатора формы (рисунок 89) заключаются в измерении амплитуд и фаз отдельных составляющих сигнала и в сравнительном анализе формы отдельных участков сигнала, начало и конец которых определяется углом поворота вала. Подобные анализаторы широко используются для диагностики машин возвратно-поступательного типа и роторов в процессе балансировки. Анализатор спектра (рисунок 90) благодаря использованию однотипных элементов позволяет уменьшить время обработки вибрационного сигнала. Введение в схему детектора огибающей дает возможность обнаруживать повреждения подшипников качения и элементов механической системы на ранних стадиях зарождения (рисунок 91).

Рисунок 89 – Структура анализатора формы сигналов вибрации и шума

Рисунок 89 – Структура анализатора формы сигналов вибрации и шума

Рисунок 90 – Структура анализатор спектра сигналов вибрации и шума

Рисунок 90 – Структура анализатор спектра сигналов вибрации и шума

Рисунок 91 – Структура анализатора спектра с детектором огибающей

Рисунок 91 – Структура анализатора спектра с детектором огибающей

 

Выпускаются анализаторы, реализующие возможности персональных компьютеров, структура которых приведена на рисунке 92. Подобные средства измерения и анализа сигналов отличаются большими габаритами и используются в лабораторных или стендовых условиях.

Рисунок 92 – Структура входного устройства (AЦП – аналого-цифровой преобразователь)

Рисунок 92 – Структура входного устройства (AЦП – аналого-цифровой преобразователь)

Развитие конструкции анализаторов вибрации неразрывно связано с развитием компьютерных технологий. Уменьшение габаритов, увеличение объёмов памяти и выполняемых функций – основные направления развития спектроанализаторов.

Встроенные системы

Принципиальная схема встроенной системы вибрационного контроля включает: датчики, соединительные устройства, персональный компьютер, совместно с программным обеспечением выполняющий функции управления переключением датчиков, сбора и анализа информации (рисунок 93).

Рисунок 93 – Принципиальная схема встроенной системы вибрационного контроля

Рисунок 93 – Принципиальная схема встроенной системы вибрационного контроля

Конфигурация измерительных блоков включает: датчики, измерительные или измерительно-сигнализирующие блоки и средства коммутации. Дополнительно измерительные блоки могут иметь контрольные выходы для подключения переносных приборов. Измерительные блоки являются независимыми друг от друга устройствами. Каждый блок индивидуально программируется. Измерительно-сигнализирующие блоки осуществляют сравнение измеренных значений с запрограммированными.

Программное обеспечение, используемое системой, сохраняет, визуализирует и оценивает результаты измерений. Осуществляет связь с переносными приборами-сборщиками информации. Управляет стационарной системой мониторинга, позволяет организовать базы данных по оборудованию, по времени измерений, работ по смазке, работ по ремонту и техническому обслуживанию. Обеспечивает графическое представление информации о состоянии оборудования.

Вопросы для самостоятельного контроля

  1. Зачем необходимы проксиметры?
  2. Из каких элементов состоит велосиметр?
  3. В каких случаях используются акселерометры?
  4. Что такое амплитудно-частотная характеристика датчика?
  5. Какие существуют способы крепления датчиков?
  6. Как закрепить датчик при помощи шпильки?
  7. В каком случае рекомендуется крепление датчиков при помощи магнитов?
  8. Из каких элементов состоит виброметр?
  9. Какие основные компоненты используются в анализаторах вибрации?
  10. Что включает принципиальная схема встроенной системы виброконтроля?

Материал предоставил Сидоров Владимир Анатольевич.

Добавить комментарий

Ваш e-mail не будет опубликован.

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Аналогичные записи
  • Лекция 14. Спектральный анализ вибрации Спектральный анализ – это метод обработки сигналов, который позволяет выявить частотный состав сигнала. Известны методы обработки вибрационного сигнала: корреляционный, автокорреляционный, спектральной мощности, кепстральных характеристик, расчета эксцесса, огибающей. Наибольшее распространение получил спектральный анализ, как метод представления информации, из-за однозначной идентификации повреждений и понятных кинематических зависимостей между происходящими процессами и спектрами [...]
  • Лекция 13. Измерение общего уровня вибрации Расположение контрольных точек для измерения параметров вибрации Точки измерения вибрации для оценки состояния машин и механизмов выбираются на корпусах подшипников или других элементов конструкции, которые в максимальной степени реагируют на динамические силы и характеризуют общее вибрационное состояние [...]
  • Лекция 11. Параметры и характеристики механических колебаний Параметры вибрационного процесса Виброперемещение, S – это расстояние между крайними точками перемещения колеблющегося элемента вдоль оси измерения. Виброперемещение измеряется в линейных единицах: в микронах – мкм; в миллиметрах – мм, при больших значениях виброперемещения, например, грохотов (1 мм = 1000 мкм). Параметром, дополняющим виброперемещение является частота вращения. Например, допустимое значение виброперемещения 20 мкм при частоте [...]
  • Лекция 10. Механические колебания ГОСТ 24346-80 «Вибрация. Термины и определения» определяет вибрацию как «движение точки или механической системы, при котором происходят колебания характеризующих его скалярных величин». Колебания скалярной величины объясняются как «процесс поочередного возрастания и убывания во времени значений какой-либо [...]
  • Лекция 9. Визуальный осмотр механизма Задачи осмотра Использование любого из органолептических методов всегда начинается с внешнего осмотра объекта, что дает не только информацию о техническом состоянии, но и позволяет обеспечить безопасность проводимых работ. Осмотр является первым в списке органолептических методов, который начинает диагностирование и заканчивает его визуальным подтверждением поставленного [...]

Поддержите нас

Подписка

Рубрики