Ассоциация EAM
Ассоциация эффективного управления производственными активами

Классификация повреждений подшипников

материал предоставил к.т.н. СИДОРОВ Владимир Анатольевич

Внешние признаки разрушения деталей всегда оставляют характерные следы, по которым можно определить причину повреждения. В результате осмотра деталей можно установить вид изнашивания и нагружения, характер контакта поверхностей подшипника и провести мероприятия для предотвращения аналогичных отказов и повышения надежности работы узла.

Подшипники качения являются основными опорными узлами механического оборудования. Безотказность данного узла может быть достаточно высокой. Правильно смонтированный подшипник, работающий в пределах расчётных нагрузок, может работать 10…20 лет. Часто это превышает срок службы механизма. Однако неправильный монтаж, недостаточная защита от попадания влаги и пыли, несоблюдение режимов эксплуатации, особенно смазывания, и ряд других причин приводят к преждевременному разрушению деталей подшипника. Период между заменами в этом случае сокращается до 1…6 месяцев. В процессе эксплуатации подшипник качения подвергается комплексному воздействию ряда факторов. Один из них является доминирующим с максимальной скоростью развития. Определив причину разрушения, износа подшипника, специалисты ремонтной службы получают возможность правильно выбрать вид ремонтного воздействия и осуществить мероприятия повышающие долговечность подшипника.

Большинство факторов разрушения подшипников, не поддаётся математическому расчёту, однако требует учёта при эксплуатации узла. Направление исследований в данном случае состоит в построении причинно-следственных связей и создании классификатора по типу повреждения подшипников.

Первым уровнем данной классификации могут быть виды механического износа:

  • адгезионный (схватывание первого и второго рода);
  • окислительный;
  • осповидный;
  • абразивный.

Виды механического изнашивания

Контактирующие поверхности деталей машин характеризуются микрорельефом и волнистостью, которыми в начальный момент работы узлов трения определяется площадь фактического контакта, давления. В процессе эксплуатации под действием рабочих нагрузок и деформаций образуется рабочий рельеф, состоящий из впадин и выступов. Их размеры зависят от внутреннего строения материалов деталей и процессов пластической деформации. При относительном движении в поверхностных слоях контактируемых деталей возникают упругопластические деформации, вызывающие появление вторичных (физических, химических, механических) процессов.

Износ схватыванием первого рода наблюдается при трении скольжения. Характеризуется возникновением адгезионных связей между деталями (рисунок 1). Условия возникновения:

  • малая скорость относительного движения (до 1 м/с для узла состоящего из двух стальных деталей);
  • высокое давление, превышающее предел текучести на площадках фактических контактов;
  • отсутствие смазки или защитной плёнки окислов между трущимися деталями;
  • низкая температура нагрева поверхностных слоёв – до 100 °С.

Износ схватыванием первого рода двух стальных деталей

Рисунок 1 – Износ схватыванием первого рода двух стальных деталей

Для подшипников качения данный вид износа появляется на начальной стадии проворачивания внутреннего кольца подшипника на валу.

Проявление. На контактной поверхности детали из менее прочного материала образуются хаотически расположенные вырывы, а на детали из более прочного материала – налипания. Налипшие частицы высокой твёрдости способствуют развитию вторичных процессов местной пластической деформации и микрорезанию поверхностей трения. Силы трения определяются геометрическими характеристиками рабочих рельефов, площадью контактных поверхностей и прочностью металлических связей. Коэффициент трения чрезвычайно высок 4-6 единиц.

Разрывы металлических связей приводят к увеличению площади фактических контактов и уменьшению давления на поверхность трения. Интенсивность пластических деформаций снижается, на деталях появятся устойчивые плёнки окислов и износ схватыванием первого рода переходит в окислительный.

Окислительный износ развивается в условиях трения качения и трения скольжения со скоростями относительного движения деталей 1,5…7,0 м/с (без смазки). При граничной смазке интервал скоростей увеличивается до 20 м/с. Механизм разрушения – образование и разрушение твёрдых плёнок окислов, возникающих на поверхностях контактирующих деталей. Эти процессы характерны для узлов трения, детали которых изготовлены из материалов с высокой твёрдостью и повы- шенным пределом текучести.

Проявление. Вид деталей, характеризуется появлением матовых поверхностей, состоящих из плёнок химических соединений металла с кислородом (рисунок 2). Это наиболее благоприятный вид изнашивания. Скорость изнашивания минимальна по сравнению с другими видами механического износа. Коэффициент трения зависит от формы трущихся поверхностей и составляет порядка 0,3…0,7 при отсутствии смазывания.

Окислительный износ на беговой дорожке наружного кольца радиально-упорного конического двухрядного роликоподшипника

Рисунок 2 – Окислительный износ на беговой дорожке наружного кольца радиально-упорного конического двухрядного роликоподшипника

Износ схватыванием второго рода. Условия образования: трение скольжения, высокое давление, скорость относительного перемещения (свыше 4 м/с), сочетание которых обуславливает большие потери на трение, высокий градиент и интенсивное возрастание температуры в поверхностных слоях (до 1600 °С).

Проявление. Внешний вид поверхности – вырывы частиц на детали из менее прочного материала, чередующиеся через примерно одинаковые промежутки. Температура поверхности 600…1400 °С. Такая температура заметно снижает механические свойства сталей, и металл размягчается, приводя к налипанию металла на поверхности более прочной детали (рисунок 3). Для подшипников качения износ схватыванием второго рода проявляется в виде заеданий, часто предшествующих полному разрушению.

Вид поверхности подшипника скольжения при износе схватыванием второго рода

Рисунок 3 – Вид поверхности подшипника скольжения при износе схватыванием второго рода

Осповидный износ возникает при трении качения, переменных или знакопеременных нагрузках и высоких давлениях, достигающих предела выносливости. Многократные нагружения вызывают усталость материала. На плоскостях максимальных напряжений внутри детали зарождаются трещины. Их развитие приводит к разрыву контактной поверхности, что принципиально изменяет характер взаимодействия деталей.

Проявление. В местах образования сколов на контактных поверхностях появляются осповидные углубления (рисунок 4). Наиболее характерный вид изнашивания для деталей подшипников качения, который должен проявляться через 5…7 лет работы.

Осповидное выкрашивание на теле качения шарикоподшипника

Рисунок 4 – Осповидное выкрашивание на теле качения шарикоподшипника

Обнаружить осповидное выкрашивание во время осмотра механического оборудования чрезвычайно трудно. Элементы подшипника практически недоступны для визуального осмотра. Поворот шарика (рисунок 4) на угол 60° не позволил бы обнаружить повреждение. Осмотр должен предварять результаты технического диагностирования.

Абразивный износ развивается при трении скольжения. Условия возникновения: наличие на поверхностях трения абразивных частиц, деформирующих микрообъёмы поверхностных слоёв и вызывающих процессы микрорезания.

Проявление. На поверхностях трения появляются однозначно ориентированные по отношению к направлению движения риски (рисунок 5). Скорость изнашивания зависит от размеров, формы, количества, свойств абразива и материала деталей, относительной скорости и давления на контактирующих поверхностях.

Абразивный износ на беговой дорожке наружного кольца радиально-упорного конического двухрядного роликоподшипника

Рисунок 5 – Абразивный износ на беговой дорожке наружного кольца радиально-упорного конического двухрядного роликоподшипника

Дополнительные виды износа

Износ при прохождении электрического тока. При прохождении тока через шарикоподшипник на беговых дорожках появляются точки, расположенные цепочкой. При прохождении электрического тока через роликоподшипник на беговых дорожках появляются риски, полоски параллельные оси вращения (рисунок 6). Повреждения такого типа присутствуют лишь на одной беговой дорожке – это результат неравномерного распределения нагрузки по рядам тел качения двухрядного подшипника.

Следы прохождения электрического тока на наружном кольце двухрядного сферического радиального роликоподшипника

Рисунок 6 – Следы прохождения электрического тока на наружном кольце двухрядного сферического радиального роликоподшипника

Коррозионный износ – результат конденсации влаги в корпусе подшипника при отсутствии смазочного материала (рисунок 7) или попадания воды в подшипник. Коррозионные разрушения всегда начинаются с поверхности металла. Коррозия на деталях подшипников бывает двух видов – сплошная и местная. Сплошная коррозия покрывает ровным слоем и изменяет шероховатость поверхности деталей, не образуя отдельных очагов. Местная коррозия наблюдается в виде пятен, глубина которых может быть от незначительного точечного углубления до язвин.

Следы местной коррозии наружного кольца подшипника

Рисунок 7 – Следы местной коррозии наружного кольца подшипника

Второй уровень классификации отражает силы, действующие на подшипник:

  • радиальная сила, приложенная в одной точке, от веса деталей механизма или от технологической нагрузки, постоянная по направлению (местное нагружение);
  • радиальная сила, приложенная в двух точках, деформирующая наружное кольцо подшипника, возникает в результате отклонений формы посадочного места подшипника;
  • радиальная сила, приложенная в одной точке, совершающая периодическое колебательное движение в ограниченном секторе;
  • радиальная сила, вращающаяся вместе с валом, возникает при неуравновешенности ротора, при изгибе вала (циркуляционное нагружение);
  • осевая сила, действующая в продольном направлении на все тела качения, в результате изгиба вала, несоосности валов, воздействия продольной технологической нагрузки.

Воздействие указанных сил приводит к появлению на беговых дорожках подшипника характерных повреждений. Следы радиальной силы, приложенной в одной точке, постоянной по направлению, при вращающемся внутреннем и неподвижном наружном кольце проявляются в виде непрерывного следа на внутреннем кольце и местном изнашивании наружного кольца (рисунок 8).

Следы радиальной силы, постоянной по направлению: (непрерывный след износа на внутреннем кольце) Следы радиальной силы, постоянной по направлению: (местное изнашивание наружного кольца)
Рисунок 8 – Следы радиальной силы, постоянной по направлению:
а) непрерывный след износа на внутреннем кольце;
б) местное изнашивание наружного кольца

Если неподвижным является внутреннее кольцо, а подвижным наружное, тогда воздействие постоянной радиальной силы проявится в виде непрерывного следа износа на наружном кольце и местном изнашивании внутреннего кольца.

При деформации наружного кольца подшипника в результате отклонений формы посадочного места на наружном неподвижном кольце появится осповидное выкрашивание в двух точках (рисунок 9).

Осповидное выкрашивание в двух местах на беговой дорожке наружного кольца двухрядного сферического радиального роликоподшипника при отклонении формы посадочного места крышки подшипника

Рисунок 9 – Осповидное выкрашивание в двух местах на беговой дорожке наружного кольца двухрядного сферического радиального роликоподшипника при отклонении формы посадочного места крышки подшипника

Радиальная сила, приложенная в одной точке, совершающая периодическое колебательное движение в ограниченном секторе приводит к местному изнашиванию наружного и внутреннего колец подшипника (рисунок 10). Такой вид изнашивания характерен для шарнирных механизмов, в которых вал совершает колебательные движения.

Местное изнашивание беговой дорожки наружного кольца двухрядного радиального роликоподшипника при колебательном движении

Рисунок 10 – Местное изнашивание беговой дорожки наружного кольца двухрядного радиального роликоподшипника при колебательном движении

Радиальная сила, вращающаяся вместе с валом, приведёт к появлению постоянного следа износа на неподвижном наружном кольце и местного выкрашивания на внутреннем кольце (рисунок 11)

Местное выкрашивание внутреннего кольца шарикоподшипника при вращающейся радиальной силе, неподвижном наружном кольце и одновременном воздействии осевой силы

Рисунок 11 – Местное выкрашивание внутреннего кольца шарикоподшипника при вращающейся радиальной силе, неподвижном наружном кольце и одновременном воздействии осевой силы

Осевая сила, действующая в продольном направлении, вызывает смещение следов износа на кольцах подшипника (рисунок 11). Дополнительно, о воздействии осевой силы можно судить по наличию засветлений на торцах роликов (рисунок 12).

Высветления на торцах роликов одной из беговых дорожек двухрядного радиального роликоподшипника при воздействии осевой силы

Рисунок 12 – Высветления на торцах роликов одной из беговых дорожек двухрядного радиального роликоподшипника при воздействии осевой силы

Третий уровень классификации определяет характер взаимодействия контактирующих поверхностей.

В подшипниковом узле имеются как неподвижные, так и подвижные контактирующие поверхности деталей. Осмотр подшипника качения проводится последовательно от посадочной поверхности подшипника в корпусе механизма к посадочной поверхности внутреннего кольца на вал.

Если поверхности внутреннего кольца и вала неподвижны, то внутреннее кольцо подшипника имеет матовую поверхность (рисунок 13).

Матовая поверхность внутреннего кольца подшипника при неподвижной посадке на вал

Рисунок 13 – Матовая поверхность внутреннего кольца подшипника при неподвижной посадке на вал

Ослабление посадки подшипника в результате ошибок монтажа, эксплуатации часто приводит к проворачиванию подшипника на валу и в корпусе (рисунок 14). Проворот подшипника сопровождается увеличением температуры узла, изменением характера шума и вибрации и приводит к недопустимому износу корпусных деталей.

Следы проворачивания колец подшипника

Рисунок 14 – Следы проворачивания колец подшипника

Фреттинг-коррозия возникает при перемещении контактирующих поверхностей под воздействием переменных сил или вибраций. Проявляется в виде интенсивного окисления поверхностей, темных пятен на посадочных поверхностях колец подшипников (рисунок 15). Приводит к стуку, ударам при работе подшипника. При дальнейшем развитии может служить причиной зарождения усталостных трещин.

Следы фреттинг-коррозии на посадочной поверхности колец шарикоподшипника (внутреннего) Следы фреттинг-коррозии на посадочной поверхности колец шарикоподшипника (наружного)
Рисунок 15 – Следы фреттинг-коррозии на посадочной поверхности колец шарикоподшипника:
а) внутреннего;
б) наружного

Если нагрузка неравномерно распределяется по длине ролика или между рядами тел качения двухрядного подшипника (рисунок 16), то долговечность подшипника значительно снижается. Причина – перекос корпуса подшипника.

Неравномерное выкрашивание при изгибе вала (по длине роликов радиального роликоподшипника) Неравномерное выкрашивание при изгибе вала (по беговым дорожкам двухрядного радиального сферического шарикоподшипника)
Рисунок 16 – Неравномерное выкрашивание при изгибе вала:
а) по длине роликов радиального роликоподшипника;
б) по беговым дорожкам двухрядного радиального сферического шарикоподшипника

Осмотр внешних торцевых поверхностей колец подшипника позволяет подтвердить проворачивание колец или определить наличие контакта подшипника с рядом расположенной деталью (рисунок 17).

Кольцевые риски на торцевой поверхности внутреннего кольца - результат контакта кольца подшипника с неподвижной деталью

Рисунок 17 – Кольцевые риски на торцевой поверхности внутреннего кольца – результат контакта кольца подшипника с неподвижной деталью

Осмотр беговых дорожек внешнего и внутреннего колец позволяет установить характер контакта тел качения и беговой дорожки. Перекос вала относительно корпуса подшипника может быть зафиксирован по треугольному следу при колебательном характере нагружения подшипника (рисунок 18).

Треугольная форма контакта кольца с роликом при перекосе вала относительно корпуса двухрядного роликового радиального подшипника

Рисунок 18 – Треугольная форма контакта кольца с роликом при перекосе вала относительно корпуса двухрядного роликового радиального подшипника

Трещины поперек беговых дорожек – результат воздействия динамических нагрузок, ударов или ошибок монтажа (рисунок 19а). Сколы бортов колец — результат динамических воздействий осевой силы (рисунок 19б).

Результаты воздействия ударной нагрузки (поперечная трещина на кольце подшипника) Результаты воздействия ударной нагрузки (сколы бортов кольца)
Рисунок 19 – Результаты воздействия ударной нагрузки:
а) поперечная трещина на кольце подшипника;
б) сколы бортов кольца

Трещины, расположенные вдоль кольца подшипника, – результат отсутствия тепловых зазоров при нагреве механизма. Возникающая при тепловом расширении осевая сила приводит к исчезновению радиального зазора и возникновению значительных радиальных сил определяемых геометрией подшипника (рисунок 20).

Схема распределения сил в шарикоподшипнике при отсутствии теплового зазора

Рисунок 20 – Схема распределения сил в шарикоподшипнике при отсутствии теплового зазора

Значение радиальной составляющей:

Ft = Fa × tgφ,

где φ – угол между силами F и Fa; F – результирующая реакция, направленная перпендикулярно к контактирующей поверхности; Fa – продольная сила.

Угол φ определяется допустимой осевой игрой δ и диаметром тел качения dW:

φ = arccos(δ / dW).

Так как угол φ близок к 90° радиальные силы могут увеличиться до такой степени, что это приведет к разрушению наружного кольца (рисунок 21).

Разрушение наружного кольца шарикоподшипника при отсутствии теплового зазора

Рисунок 21 – Разрушение наружного кольца шарикоподшипника при отсутствии теплового зазора

Увеличенная осевая игра пары радиально-упорных шариковых подшипников приводит при возникновении продольной силы к появлению гранности или к осповидному выкрашиванию на нерабочей части беговой дорожки (рисунок 22).

Вид нерабочей части беговой дорожки радиально-упорного шарикового подшипника при увеличенной осевой игре и продольном нагружении (гранность) Вид нерабочей части беговой дорожки радиально-упорного шарикового подшипника при увеличенной осевой игре и продольном нагружении (осповидное выкрашивание)
Рисунок 22 – Вид нерабочей части беговой дорожки радиально-упорного шарикового подшипника при увеличенной осевой игре и продольном нагружении:
а) гранность;
б) осповидное выкрашивание

Бринеллирование проявляется в появлении вмятин на беговых дорожках с шагом, равным шагу тел качения. Оно является следствием ударных воздействий во время монтажа (рисунок 23).

Бринеллирование на беговых дорожках упорного шарикоподшипника - вмятины с шагом, равным шагу тел качения

Рисунок 23 – Бринеллирование на беговых дорожках упорного шарикоподшипника – вмятины с шагом, равным шагу тел качения

Ложное бринеллирование возникает при оттоке смазки с поверхностей качения подшипников неработающей машины в результате механических колебаний, передающихся от работающих механизмов. Проявляется в виде повреждений рабочей поверхности подшипника расположенных с шагом равным шагу тел качения (рисунок 24).

Следы ложного бринеллирования на рабочей поверхности наружного кольца роликового радиально-упорного конического однорядного подшипника

Рисунок 24 – Следы ложного бринеллирования на рабочей поверхности наружного кольца роликового радиально-упорного конического однорядного подшипника

Повреждения сепаратора – наиболее серьёзный вид повреждений. При повреждениях сепаратора возможны повреждения других деталей вследствие вибрации, износа, заклинивания и перекосов (рисунок 25). Наиболее распространенная причина разрушения сепаратора – проблемы смазывания и деформации наружных колец. Это приводит к возникновению неравномерных сил по телам качения и воздействию разрушающих сил на сепаратор.

Разрушение сепаратора Разрушение сепаратора
Рисунок 25 – Разрушение сепаратора

Подшипники качения подлежат замене при наличии одного из повреждений:

  • усталостные раковины на дорожках и телах качения;
  • коррозионные раковины на дорожках и телах качения;
  • трещины, сколы бортов, колец;
  • трещины колец, роликов, шариков;
  • трещины, излом сепаратора;
  • задиры на рабочих поверхностях колец и тел качения;
  • износ и обрыв заклепок сепаратора;
  • забоины на сепараторе;
  • рифление на рабочих поверхностях колец и тел качения;
  • выработка на рабочих поверхностях колец и тел качения;
  • вмятины на рабочих поверхностях;
  • поверхностная коррозия на рабочих поверхностях подшипника;
  • цвета побежалости на рабочих поверхностях;
  • увеличение радиального зазора.

Большинство рассмотренных факторов не поддаётся математическому расчёту, однако требует учёта при эксплуатации узла. Направление дальнейших исследований состоит в построении причинно-следственных связей при разрушении подшипников. Это позволит обоснованно выбирать вид ремонтного воздействия и определять причины повреждений. На первом этапе можно предложить использовать причинные связи между классификационными признаками повреждений, приведенные в статье.

Добавить комментарий

Ваш e-mail не будет опубликован.

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Аналогичные записи
  • Общие правила оценки технического состояния оборудования по вибрации материал предоставил СИДОРОВ Александр Владимирович Основная деятельность ремонтных служб предприятий направлена на обеспечение возможности надёжной и безопасной эксплуатации оборудования. Указанное достигается посредством качественного и своевременного проведения технического обслуживания и ремонтов. Современные прогрессивные стратегии технического обслуживания и ремонтов базируются на знании фактического технического состояния оборудования. Среди используемых для этого методов неразрушающего контроля, наиболее широкое распространение получила [...]
  • Сезонные отказы металлургических машин материал предоставил к.т.н. СИДОРОВ Владимир Анатольевич Анализ отказов металлургических машин, проведенный с использованием теории временных рядов, свидетельствует о наличии сезонного фактора, влияющего на техническое состояние металлургических машин. Сезонные компоненты были выявлены в последовательности отказов слитковоза, привода стационарной пилы, крепления опускающегося упора обжимного цеха (период 6 месяцев) и др. Один из факторов, оказывающих влияние на изменение [...]
  • Осмотр механического оборудования материал предоставил к.т.н. СИДОРОВ Владимир Анатольевич в соавторстве со ЗДАНЕВИЧЕМ Владимиром (НИИ горной механики имени М.М. Фёдорова) Техническая диагностика представляет собой систему методов, применяемых для установления и распознания признаков, характеризующих техническое состояние оборудования. В настоящее время, несмотря на значительное развитие аппаратных средств измерений и контроля, большая роль в определении неисправностей и нахождении повреждений механического оборудования [...]
  • Субъективные (органолептические) методы технического диагностирования материал предоставил к.т.н. СИДОРОВ Владимир Анатольевич Несмотря на большое количество современных методов диагностирования и контроля работы оборудования, органолептические методы, основанные на анализе информации, воспринимаемой органами чувств человека, до сих пор имеют широкое распространение. Вопреки кажущейся примитивности, они являются достаточно эффективными (даже в сравнении с приборными методами) и не требуют серьёзных вложений средств. Но в случае [...]
  • Нарушение смазывания как причина отказов подшипников качения материал предоставил к.т.н. СИДОРОВ Владимир Анатольевич Нарушения в поступлении и движении смазочного материала в узлах подшипников качения часто являются причиной отказов механического оборудования. К сожалению, задачи о движении смазочного материала в подшипниках весьма сложны и во многом до сих пор ещё не решены аналитически, поэтому причины генезиса отказов приходится искать эмпирическим путём. Эти причины следует [...]

Поддержите нас

Подписка

Рубрики