Ассоциация EAM
Ассоциация эффективного управления производственными активами

3.1. Виды механического изнашивания

Механическое оборудование: техническое обслуживание и ремонт / В.И. Бобровицкий, В.А. Сидоров. – Донецк: Юго-Восток, 2011. – 238 с.

Механический износ – процесс постепенного разрушения поверхностей деталей при относительном движении. Для повышения надёжности работы оборудования следует выявить условия возникновения отдельных видов изнашивания, механизм разрушения и внешний вид поверхности трения. Основная функция визуального осмотра трущихся поверхностей – определение вида изнашивания и постановка диагноза, позволяющая принять рациональные ремонтные воздействия, снижающие скорость износа.

Контактируемые поверхности деталей машин характеризуются микрорельефом, который в начальный момент работы узлов трения определяет площадь фактического контакта. В процессе эксплуатации под действием рабочих нагрузок и деформаций образуется рабочий рельеф, состоящий из впадин и выступов. Их размеры зависят от внутреннего строения материалов деталей и процессов пластической деформации. При относительном движении в поверхностных слоях контактируемых деталей возникают упругопластические деформации, вызывающие появление вторичных (физических, химических, механических) процессов. Профессор Б.И. Костецкий выделяет пять основных видов механического износа [11]:

  1. Износ схватыванием первого рода наблюдается при трении скольжения. Характеризуется возникновением адгезионных связей между деталями (рисунок 3.1). Условия возникновения:
    • малая скорость относительного движения (до 1 м/с для узла, состоящего из двух стальных деталей);
    • высокое давление, превышающее предел текучести на площадках фактических контактов;
    • отсутствие смазки или защитной плёнки окислов между трущимися деталями;
    • низкая температура нагрева поверхностных слоев – до 100 °С.

    Износ схватыванием первого рода

    Рисунок 3.1 – Износ схватыванием первого рода

    Механизм разрушения определяется взаимодействием рабочих рельефов при давлениях, превышающих предел текучести, сопровождается интенсивными пластическими деформациями, в результате которых разрушаются плёнки окислов и вскрываются химически чистые металлические поверхности. Пластические деформации способствуют максимальному сближению деталей и образованию в поверхностных слоях текстур из предельно деформированных кристаллов, расположенных по направлению относительного смещения деталей. Если расстояния предельно малы и соизмеримы с размерами атомных решеток, то между ориентированными кристаллами двух деталей появляются металлические связи. Дальнейшее смещение деталей приводит к упрочнению металла в местах образования связей. При предельных значениях твёрдости и хрупкости металлические связи разрываются.

    Проявление. На контактной поверхности детали из менее прочного материала образуются хаотически расположенные вырывы, а на детали из более прочного материала – налипания. Налипшие частицы высокой твёрдости способствуют развитию вторичных процессов местной пластической деформации и микрорезанию поверхностей трения. Скорость изнашивания деталей 10-15 мкм/ч. Силы трения определяются геометрическими характеристиками рабочих рельефов, площадью контактных поверхностей и прочностью металлических связей. Коэффициент трения чрезвычайно высок – 4-6 единиц.

    Разрывы металлических связей могут привести к увеличению площади фактических контактов и уменьшению давления на поверхность трения. Если давления станут ниже предела текучести, то интенсивность пластических деформаций снизится, на деталях появятся устойчивые плёнки окислов и износ схватыванием I рода перейдёт в окислительный.

  2. Окислительный износ развивается в условиях трения качения и трения скольжения со скоростями относительного движения деталей 1,5-7,0 м/с (без смазки). При граничной смазке интервал относительных скоростей увеличивается до 20 м/с.Механизм разрушения поверхностей определяется взаимодействием материалов деталей с кислородом окружающей среды: насыщением металлов кислородом за счёт химических реакций, проникновения кислорода в поверхностные слои деталей и растворением кислорода в поверхностных слоях. Тепловыделение при трении, способствующее диффузии из газовой или смазочной среды O2, S, P, Cl, вызывает образование твёрдых растворов и пленок окислов, защищающих исходные материалы сопряжённых деталей от интенсивного износа. Эти процессы характерны для узлов трения, детали которых изготовлены из материалов с высокой твёрдостью и повышенным пределом текучести. Изнашивание поверхностей заключается в периодическом появлении и скалывании твёрдых и хрупких химических соединений (рисунок 3.2), проявляющихся в виде окисных плёнок.
    Окислительный износ

    Рисунок 3.2 – Окислительный износ

    Проявление. Внешний вид деталей, работающих в условиях окислительного износа, характеризуется появлением матовых полос, состоящих из плёнок оксидов, твёрдых растворов и химических соединений металла с кислородом. Это наиболее благоприятный вид изнашивания. Скорость изнашивания минимальна по сравнению с другими видами механического износа – 0,1-0,5 мкм/ч. Коэффициент трения зависит от формы трущихся поверхностей и колеблется в пределах 0,3-0,7 при отсутствии смазывания.

  3. Износ схватыванием второго рода. Условия образования:
    • трение скольжения;
    • высокие давление и скорость относительного перемещения (свыше 4 м/с), сочетание которых обусловливает большие потери на трение;
    • высокий градиент и интенсивное возрастание температуры в поверхностных слоях (до 1600 °С).

    Проявление. Различают три стадии износа схватыванием второго рода:

    1. Первая стадия соответствует для сталей интервалу температур до 600 °С, мало снижающих механические свойства материалов. Внешний вид поверхности: вырывы частиц на детали из менее прочного материала, чередующиеся через примерно одинаковые промежутки.
    2. Вторая стадия износа развивается в интервале температур 600-1400 °С. Такая температура заметно снижает механические свойства сталей, и металл размягчается. Внешний вид поверхности: на контактной поверхности более прочной детали видны налипание и размазывание металла, а на поверхности менее прочной детали – вырывы.
    3. Третьей стадии износа соответствуют температуры плавления. Расплавленные слои металла уносятся со смазкой, и на поверхности трения появляются оплавленные бороздки (рисунок 3.3). Скорость изнашивания составляет 1-5 мкм/ч. Коэффициент трения колеблется в пределах 0,1-0,5.

    Вид поверхности при износе схватыванием второго рода

    Рисунок 3.3 – Вид поверхности при износе схватыванием второго рода

  4. Осповидный износ возникает при трении качения, переменных или знакопеременных нагрузках и высоких давлениях, достигающих предела выносливости. Многократные нагружения вызывают усталость материала. На плоскостях максимальных напряжений внутри детали зарождаются трещины (рисунок 3.4). Их развитие приводит к разрыву контактной поверхности, что принципиально изменяет характер взаимодействия деталей. Движение тел качения через разрыв поверхности сопровождается динамическими явлениями, в результате чего износ прогрессирует.
    Схема возникновения осповидного износа

    Рисунок 3.4 – Схема возникновения осповидного износа

    Проявление. В местах образования сколов на контактных поверхностях появляются осповидные углубления. Наиболее характерный вид изнашивания для деталей подшипников качения (рисунок 3.5).

    Вид осповидного износа на поверхности наружного кольца подшипника

    Рисунок 3.5 – Вид осповидного износа на поверхности наружного кольца подшипника

  5. Абразивный износ развивается при трении скольжения. Условия возникновения: наличие на поверхностях трения абразивных частиц, деформирующих микрообъёмы поверхностных слоёв и вызывающих процессы микрорезания.Проявление. На поверхностях трения появляются однозначно ориентированные по отношению к направлению движения риски различной глубины и протяжённости (рисунок 3.6). Скорость изнашивания колеблется в пределах 0,5-5,0 мкм/ч и зависит от размеров, формы, количества, свойств абразива и материалов деталей, от относительной скорости и давлениях на контактирующих поверхностях.

    Абразивный износ рабочей поверхности кольца подшипника

    Рисунок 3.6 – Абразивный износ рабочей поверхности кольца подшипника

Эрозионное изнашивание. Твёрдые частицы, движущиеся в потоке газа или жидкости, оказывают на поверхность металла многократные локальные импульсные удары, вызывающие расшатывание и вымывание поверхностного слоя деталей – эрозию.

Электроэрозионное изнашивание – эрозионное изнашивание поверхности в результате воздействия разрядов при прохождении электрического тока. При электрической эрозии контактов происходит частичный перенос металла с одного контакта на другой и распыление металла.

Кавитационное изнашивание – гидроэрозионное изнашивание при движении твёрдого тела относительно жидкости (и наоборот), при котором пузырьки газа захлопываются вблизи поверхности, создавая тем самым местное повышение давления.

< 2.6. Визуальный осмотр Содержание 3.2. Способы повышения надёжности механического оборудования при механических видах износа >

Добавить комментарий

Ваш e-mail не будет опубликован.

Этот сайт использует Akismet для борьбы со спамом. Узнайте как обрабатываются ваши данные комментариев.

Аналогичные записи
  • 7.7. Обработка поверхности Обозначение шероховатости поверхности (смотри таблицу 7.3, таблицу 7.4): – знак I применяется для поверхности, вид обработки которой конструктором не устанавливается; – знак II применяется для поверхности, которая должна быть обработана удалением слоя материала, например, точением, фрезерованием, сверлением, шлифованием, полированием, травлением и т.п.; – знак III применяется для поверхности, образуемой без удаления слоя материала, например, литьём, [...]
  • 7.6. Основы термообработки Термообработка металлов и их сплавов — процесс целесообразно выбранных операций нагрева и охлаждения, в результате которого повышаются механические свойства, изменяются физические свойства, а следовательно, увеличивается срок эксплуатации деталей. Основными видами термообработки являются: отжиг, нормализация, закалка и [...]
  • 7.5. Сопротивление материалов Модуль Юнга (модуль упругости первого рода) Е, МПа, Н/мм2 — постоянная упругости в законе Гука в пределах, когда деформация пропорциональна напряжению. Модуль Юнга численно равен напряжению, увеличивающему длину образца в два раза: для стали, Ест = (2,0-2,2)×105 МПа; для чугуна, Еч = 1,2×105 МПа; для меди, Ем = 1,0×105 МПа; для алюминия, Еал = 0,6×105 МПа; [...]
  • 7.4. Мерительный инструмент Механическое оборудование: техническое обслуживание и ремонт / В.И. Бобровицкий, В.А. Сидоров. – Донецк: Юго-Восток, 2011. – 238 с. Мерительный инструмент В зависимости от назначения в процессе производства средства измерения и контроля линейных и угловых величин подразделяются на [...]
  • 7.3. Обозначения и свойства сталей, бронз, баббитов Механическое оборудование: техническое обслуживание и ремонт / В.И. Бобровицкий, В.А. Сидоров. – Донецк: Юго-Восток, 2011. – 238 [...]

Поддержите нас

Подписка

Рубрики