Анализ шумов механизмов проводится по двум направлениям:

  1. Акустическое восприятие, позволяющее оценивать наиболее значимые повреждения, меняющие акустическую картину механизма. Весьма эффективно при определении повреждений муфт, дисбаланса или ослабления посадки деталей, обрыве стержней ротора, ударах деталей. Диагностические признаки – изменение тональности, ритма и громкости звука.
  2. Анализ колебаний механизмов. В этом методе механические колебания корпусных деталей преобразуются в звуковые колебания при помощи технических или электронных стетоскопов. Электронные средства позволяют расширить возможности человеческого восприятия.

В механических устройствах степень повреждения определяется по характеру взаимодействия контактирующих деталей. Физическое проявление соударения деталей во время работы реализуется в виде распространения упругих волн акустического диапазона, возникновения механических колебаний (вибраций) и ударных импульсов. Несмотря на единую физическую природу, каждое из этих проявлений имеет свои особенности и различным образом отображает происходящие процессы.

Упругие волны, порождающие акустические колебания в частотном диапазоне 20…16000 Гц, прослушиваются специалистом, находящимся рядом с оборудованием. Все слышимые звуки разделяются на шумы и музыкальные звуки. Первые представляют собой непериодические колебания с переменной частотой и амплитудой, вторые — периодические колебания. Между музыкальными звуками и шумами нет чёткой границы. Акустическая составная часть шума часто носит ярко выраженный музыкальный характер и содержит разнообразные частоты (тоны), которые легко улавливаются опытным ухом.

Основными параметрами звука являются:

  1. Громкость зависит от амплитуды колебаний звуковой волны. Сила звука и громкость – неравнозначные понятия. Сила звука объективно характеризует физический процесс, а громкость определяет качество воспринимаемого звука. Сила звука может меняться от слухового порога (порога слышимости) до болевого порога. Для низких частот, громкость воспринимается в большей степени, чем для высоких, при одинаковой амплитуде колебаний звуковой волны. Можно оценивать изменения громкости в 2, 3, 4 раза, оценить увеличение громкости более чем в 4 раза точно не удается.
  2. Высота звука отражает частоту колебаний звуковой волны. Нижняя граница слуха у человека составляет 15…19 Гц; верхняя – 15000…20000 Гц. Чувствительность уха имеет индивидуальные отклонения. Частоты 200…3500 Гц соответствуют спектру человеческой речи. Минимальная длительность звука, при которой можно оценить спектральный состав акустических колебаний – 20…50 мс. При меньшей длительности звук воспринимается как щелчок.
    При воздействии частот выше 15000 Гц ухо становится менее чувствительным, теряется способность различать высоту тона. При 19000 Гц предельно слышимыми оказываются звуки, более интенсивные, чем при 14000 Гц. При повышении интенсивности высоких звуков возникает осязание звука, а затем чувство боли. Область слухового восприятия ограничена: сверху – порогом осязания, снизу – порогом слышимости. Наиболее воспринимаемы звуки в диапазоне 1000 до 3000 Гц. В этой области ухо является наиболее чувствительным. Повышенная чувствительность в области 2000…3000 Гц объясняется собственными частотами барабанной перепонки.
  3. Под тембром понимают характер или окраску звука, зависящую от взаимоотношения составляющих частот. Тембр отражает акустический состав звука — число, порядок и силу составляющих (гармонических и негармонических). Тембр зависит от того, какие гармонические частоты складываются с основной частотой и от амплитуды составляющих частот. В слуховых ощущениях тембр сложного звука играет значительную роль.

Скорость распространения звуковых волн зависит от плотности среды-проводника. Скорость звука в воздушной среде составляет 340 м/с; в воде – 1500 м/с; в стали – 5000 м/c.

Основные наблюдаемые отклонения акустических шумов

Глухие толчки при изменении направления вращения валов механизма соответствуют износу шпоночных или шлицевых соединений, элементов муфт, повышенному зазору в зубчатой передаче.

Слабые стуки низкого тона соответствуют сколам шлицев, ослаблению шпоночного соединения, несоосности соединительных муфт.

Резкий металлический звук сопровождает повреждения соединительных муфт.

Свистящий звук возникает при проскальзывании ремней ременной передачи.

Частые резкие удары соответствуют биениям муфт, а также неправильной сборке карданных валов.

Прослушивание механических колебаний, возникающих при работе механизма, является самым распространенным методом определения состояния работающего оборудования. Механические колебания низкой и средней частоты легко распространяются по корпусным деталям механизма. Для прослушивания механических колебаний используется технический стетоскоп, состоящий из металлической трубки и деревянного (лучше текстолитового) наушника (рисунок 43). Металлическая трубка, установленная на корпусе механизма, позволяет преобразовать механические колебания в акустические, распространяемые по стенкам трубки к наушнику. Этот метод настолько доказал свою надежность, что требования по прослушиванию шумов механизмов включены во все правила технического обслуживания и инструкции по эксплуатации оборудования.

Рисунок 43 Технический стетоскоп

(а)

Рисунок 43 – Технический стетоскоп

(б)

Рисунок 43 – Технический стетоскоп

(в)

Рисунок 43 – Технический стетоскоп: а) схема; б) чертёж; в) общий вид

Появление технического стетоскопа последовало после изобретения медицинского стетоскопа – инструмента для выслушивания звуковых явлений, сопровождающих функции органов тела человека. Как всякий инструмент, преобразующий механические колебания в звуковые, технический стетоскоп имеет свои индивидуальные звуковые особенности. Характер преобразования звука техническим стетоскопом зависит от длины, диаметра трубки, толщины стенки, материала, формы наушника. Всё это влияет на частоту собственных колебаний стетоскопа. Прослушиваемые шумы, имея свои отличия, в тоже время едины в отображении звуковых картин повреждений механизма. Возможные реализации технических стетоскопов весьма разнообразны (рисунок 44). Это оборудование часто используется для прослушивания двигателей внутреннего сгорания автомобилей.

Рисунок 44 Примеры исполнения технических стетоскопов

(а)

Рисунок 44 Примеры исполнения технических стетоскопов

(б)

Рисунок 44 – Примеры исполнения технических стетоскопов:
а) технический стетоскоп GA111C для прослушивания машинных шумов и стуков, имеет диафрагму звукового усиления; б) технический стетоскоп КА-6323 для прослушивания шумов в механической части двигателя, трансмиссии

Сейчас при прослушивании шумов, используют электронные стетоскопы (рисунок 45). Щуп прибора устанавливается на корпусе механизма. Электрический сигнал, снимаемый с пьезоэлектрического датчика, подаётся на усилитель звуковой частоты, а затем ‑ в звукозащитные наушники. По частоте и силе звука судят о наличии повреждений в контролируемом механизме и об их характере. Электронные стетоскопы выпускаются многими фирмами, в качестве примера на рисунке 45 показана продукция фирмы SKF.

Рисунок 45 Электронные стетоскопы, выпускаемые фирмой SKF

(а)

Рисунок 45 Электронные стетоскопы, выпускаемые фирмой SKF

(б)

Рисунок 45 Электронные стетоскопы, выпускаемые фирмой SKF

(в)

Рисунок 45 – Электронные стетоскопы выпускаемые фирмой SKF:
а) TMST2; б) TMST3; в) применение TMST3

К преимуществам электронных стетоскопов следует отнести: высокое качество звука и возможность сосредоточиться на распознавании повреждения благодаря звукозащитным наушникам. Есть и недостатки: регулировка громкости лишает оператора основного преимущества – оценки степени повреждения, кроме того, высококачественные звукозащитные наушники не позволяют услышать предупреждение об опасности в производственном цехе.

Утверждение о возможности использования стетоскопа без подготовки необоснованы. Наиболее сложной задачей является процесс распознавания шумов и определения видов повреждений. Этот процесс трудно формализовать. Многое зависит от квалификации и опыта человека, использующего этот метод. Очень трудно заменить квалифицированного механика с его субъективным мнением.

Предпринимаются попытки расширить возможности человеческого восприятия, используя электронные средства. Например, ультразвуковые стетоскопы позволяют прослушивать не воспринимаемый слухом диапазон ультразвуковых колебаний, связанный с повреждениями подшипников качения, искровыми разрядами, утечками газа (рисунок 46).

Рисунок 46 – Ультразвуковые стетоскопы производства фирмы SKF (Шве-ция)

(а)

Рисунок 46 – Ультразвуковые стетоскопы производства фирмы SKF (Шве-ция)

(б)

Рисунок 46 – Ультразвуковые стетоскопы производства фирмы SKF (Швеция):
а) ультразвуковой детектор утечек TMSU 1; б) CMIN 400-K Inspector 400

Любой газ, просачиваясь из области высокого в область низкого давления, создает высокочастотный звук, который можно определить с помощью электронного стетоскопа преобразующего неслышимый ультразвук (20…100 кГц) в акустический. Аналогичным образом можно услышать электрические разряды, кавитацию в трубопроводах, повреждения подшипников и зубчатых передач, избежать случаев недостаточного смазывания. Однако следует помнить, что данный метод в большей степени индикаторный и не позволяет получить точной количественной оценки степени повреждения.

Шумы механизма

Сигналы, возбуждаемые колебаниями работающих механизмов, носят импульсный характер. Увеличение зазора между сопрягаемыми деталями приводит к перераспределению энергии по частотным диапазонам, повышению уровня сигнала на более высоких частотах. Амплитуда колебаний характеризует динамику работы кинематической пары, степень повреждения, а частота – источник колебаний. Значительные повреждения сопровождаются нарушением стабильности звучания, появлением высоких частот и возрастанием силы звука.

Решение задачи распознавания шумов и видов повреждений основывается на знании характерных шумов элементов механизма.

Характерные шумы подшипников качения:

  1. Незначительный ровный шум низкого тона свидетельствует о нормальном состоянии подшипника качения.
  2. Глухой прерывистый шум – о загрязнённости смазки.
  3. Звенящий (металлический) шум – о недостаточной смазке, возникает также при повышенном радиальном зазоре.
  4. Свистящий шум указывает на взаимное трение скольжения деталей подшипникового узла.
  5. Скрежет, резкое частое постукивание возникает при повреждениях сепаратора или тел качения.
  6. Глухие периодические удары – результат ослабления посадки подшипника, дисбаланса ротора.
  7. Воющий звук, скрежетание, гремящий шум, интенсивный стук указывают на повреждение элементов подшипника.

Шумы зубчатых передач:

  1. Ровный жужжащий шум низкого тона характерен для нормальной работы зубчатой передачи. Косозубая передача в этом случае имеет ровный воющий шум низкого тона.
  2. Шум высокого тона, переходящий с увеличением частоты вращения в свист и вой, и непрерывный стук в зацеплении происходит при искажении формы работающих поверхностей зубьев или при наличии на них местных дефектов.
  3. Дребезжащий металлический шум, сопровождающийся вибрацией корпуса, возможен вследствие малого бокового зазора или несоосности, непараллельности осей колёс.
  4. Циклический (периодический) шум, появляющийся с каждым оборотом колеса, то ослабевающий, то усиливающийся, указывает на эксцентричное расположение зубьев относительно оси вращения. Устранить такой шум в редукторе практически невозможно.
  5. Циклические удары, грохот, глухой стук – излом зуба.

Шумы, характерные для подшипников скольжения:

  1. Нормальной работе соответствует монотонный и шелестящий шум.
  2. Отсутствию смазки соответствует свист высокого тона, скрежет.
  3. Задирам на поверхности подшипников скольжения, несоосности валов и выкрашиванию соответствуют периодические удары, резкое металлическое постукивание.

При смазке кольцом: отсутствию смазки соответствует звенящий металлический шум; повышенной вязкости масла – циклические удары низкого тона.

Дополнительные рекомендации

Звон металлических деталей при ударе, например, молотком, используется для определения наличия дефектов. Звук, издаваемый стальной деталью, содержащей дефект, дребезжащий, более низкий и глухой по сравнению со звуком бездефектной детали, имеющий чистый, высокий звук. Данный метод достаточно эффективен применительно к контролю затяжки резьбовых соединений, целостности деталей простой формы. В более сложных случаях его использование ограничено.

Каждый механизм содержит две причины шумов: механического и электрического характера. Воющий звук, исчезающий при отключении питания электродвигателя, указывает на повреждения в электрической части мотора.

Степень повреждения определяется интенсивностью шума. Шум, вызывающий болевые ощущения при прослушивании техническим стетоскопом, является пределом эксплуатации деталей. Использование электронного стетоскопа предполагает сравнение интенсивности шума однотипных элементов.

Указанные виды шумов в истинном виде проявляются редко. Акустическая картина механизма составляется из совокупности шумов всех элементов, определяется размерами, характером смазывания, нагрузками, температурой и другими факторами. Поэтому, приведенная классификация служит исходной информацией при расшифровке конкретной акустической картины механизма. Классификация шумов создается практически для каждой машины. Качество расшифровки и правильность постановки диагноза зависит от квалификации, подготовленности и опыта механика. Основная рекомендация – при появлении высокочастотного резкого шума следует провести осмотр узла – это позволит уточнить характер и степень повреждения. Поэтому, не следует увлекаться упражнениями в распознавании характерных шумов механизма, просто следует быть к ним более внимательным.

Вопросы для самостоятельного контроля

  1. По каким двум направлениям проводится анализ шумов механизма?
  2. Перечислите основными параметрами звука.
  3. Что такое технический стетоскоп и для чего его используют?
  4. В каких случаях применяется электронный стетоскоп?
  5. Сравнив возможности и характеристики сделайте выбор между техническим и электронным стетоскопом.
  6. Кратко охарактеризуйте характерные шумы подшипников.
  7. Какие акустические признаки повреждений зубчатых передач существуют?

Материал предоставил Сидоров Владимир Анатольевич.